1. (20) (Show all work).

As a model rocket is launched, it is bumped slightly causing it to have an rather erratic flight path. It is observed that the acceleration of the rocket is given by $\mathbf{a}(t) = \langle -5\cos t, -2\sin t, 0 \rangle$ m/sec², with an initial velocity of $\mathbf{v}(0) = \langle 0, 2, 6000/\pi \rangle$ m/sec, and an initial position of $\mathbf{r}(0) = \langle 5, 0, 0 \rangle$. Note: There are no other forces acting on the rocket, so don't bring gravity into the picture.

- (a) Determine the velocity $\mathbf{v}(t)$ of the rocket at time t.
- (b) Determine the position $\mathbf{r}(t)$ of the rocket at time t.
- (c) How long does it take for the rocket to reach an altitude of 3000 m?
- (d) A balloon happens to be drifting by following the straight line path $\langle 0, 0, 3000 \rangle + s \langle 1, 2, 0 \rangle$. Does the balloon get hit by the rocket? Why or why not?
- 2. (20) (Show all work). Lines and planes
 - (a) Find an equation of the line of intersection of the two planes x + 2y + 3z = 2 and 3x 2y + z = 2.
 - (b) Find the point of intersection of the line $\mathbf{r} = \langle 1 + 2t, 3 + 4t, 5 + 6t \rangle$ and the plane x + 2y + 3z = 50.
- 3. (60) Multiple Choice Circle the correct response. (No partial credit will be given)
 - (a) Consider the planes (1) 2(x-2) + 3(y-1) 4(z+1) = 0, (2) 2x + 3y - 2z = 11, and (3) x + (3/2)y - 2z = 3.
 - **A**. (1) & (2) are parallel **B**. (2) & (3) are parallel
 - **C**. (1) & (3) are parallel **D**. (1), (2) & (3) are parallel

E. none of the above

(b) Consider the cube determined by the vectors \mathbf{i} , \mathbf{j} and \mathbf{k} . The cosine of the angle between the diagonal from (0,0,0) to (1,1,1) and the diagonal from (1,1,0) to (0,0,1) is

A. $-1/\sqrt{3}$ **B**. $\pi/2$ **C**. 1/3 **D**. $\sqrt{3}/3$

${\bf E}. \ \, {\rm none} \ \, {\rm of} \ {\rm the} \ \, {\rm above}$

(c) Let P be the plane given by x + y + z = 3 and L the line given by x = t + 2, y = -t + 2, z = t + 2. Then

A. L lies on P **B**. L and P are perpendicular

C. L and P are parallel, but L not on P

- **D**. L and P intersect at one point **E**. none of the above
- (d) If L_1 is the line given by x = 3t + 1, y = 2t 1, z = t + 3 and the line L_2 is given by x = 2s + 7, y = 2s + 3, z = s + 5. Then L_1 and L_2 are
 - A. intersecting B. parallel, but not equal C. skew
 - **D**. equal **E**. none of the above
- (e) If the vectors **a** and **b** determine adjacent sides of a parallelogram, then the two diagonals can be written as

 $A. \ a-b, \ -a-b \qquad B. \ a+b, \ a-b \qquad C. \ a-b, \ b-a$

D.
$$\mathbf{a} + \mathbf{b}$$
, $-\mathbf{a}$ **E**. none of the above

- (f) If $\mathbf{r}(t) = \langle t^2, \ln t, 2t \rangle$ then the length of \mathbf{r} from t = 1 to t = 2 is
 - **A**. 2 + e **B**. $3 + \ln 2$ **C**. 3.6 **D**. 3

E. none of the above

(g) For a curve
$$\mathbf{u}(t)$$
, $\frac{d|\mathbf{u}|}{dt} =$
A. $\frac{\mathbf{u}'}{2\sqrt{|\mathbf{u}|}}$
B. $|\mathbf{u}'|$
C. $\frac{\mathbf{u}'}{2|\mathbf{u}|}$
D. $\frac{\mathbf{u} \cdot \mathbf{u}'}{|\mathbf{u}|}$
E. none of the above

(h) If the motion of a particle is given by a vector valued function $\mathbf{r}(t)$ defined for $a \le t \le b$, then the integral of the speed of $\mathbf{r}(t)$ from t = a to t = b equals

A. the acceleration **B**. the distance from $\mathbf{r}(a)$ to $\mathbf{r}(b)$

C. the velocity

D. the distance the particle travels from $\mathbf{r}(a)$ to $\mathbf{r}(b)$

 ${\bf E}. \ \, {\rm none} \ \, {\rm of} \ {\rm the} \ \, {\rm above}$

- (i) Consider the vector-valued functions $\mathbf{r}(t) = \langle t, t, t \rangle, 1 \le t \le e$ and, $\mathbf{s}(t) = \langle e^t, e^t, e^t \rangle, 0 \le t \le 1$. Then \mathbf{r} and \mathbf{s} have
 - A. different velocities and different lengths
 - **B**. different speeds and the same length
 - ${\bf C}. \,$ different velocities and the same speed
 - **D**. different speeds and different lengths **E**. none of the above

(j)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

A. exists

- **B**. exists along the lines x = 0 and y = 0, but not elsewhere
 - C. exists along the line y = x, but not elsewhere
 - **D**. does not exist **E**. none of the above

(k) The function
$$\mathbf{r}(t) = \left\langle \ln t, \frac{\sin t}{t}, \frac{1}{t} \right\rangle$$

A. is continuous at t = 0 **B**. is continuous for all t > 0

C. is defined, but not continuous at t = 0

D. is discontinuous for all t **E**. none of the above

(1) The unit tangent vector of
$$\mathbf{r}(t) = \langle 1 + t^3, te^{-t}, \sin(2t) \rangle$$
 at $t = 0$ is
A. $(1/\sqrt{6})\langle 1, 1, 2 \rangle$
B. $(1/\sqrt{5})\langle 0, 1, 2 \rangle$
C. $(1/\sqrt{3})\langle 0, 1, 2 \rangle$
D. $(1/\sqrt{14})\langle 3, 1, 2 \rangle$
E. none of the above
(m) If \mathbf{u} and \mathbf{v} are vectors and the scalar projection of \mathbf{v} onto \mathbf{u} (comp_u \mathbf{v}) is -2, then the angle between \mathbf{u} and \mathbf{v} is
A. acute
B. $\pi/2$
C. obtuse
D. π
E. none of the above
(n) The distance between the planes $x + y + z = 1$ and $x + y + z = 3$ is
A. 1
B. 2
C. $2/\sqrt{3}$
D. $3/\sqrt{3}$
E. none of the above
(o) If \mathbf{u} is a unit vector that makes an angle of $\pi/4$ with \mathbf{i} and $\pi/3$ with \mathbf{k} , then \mathbf{u} can be

A.
$$\langle \frac{\sqrt{2}}{3}, \frac{2}{3}, \frac{\sqrt{3}}{3} \rangle$$
 B. $\langle \frac{2}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{2}}{3} \rangle$ C. $\langle \frac{\sqrt{2}}{2}, \frac{1}{2}, -\frac{1}{2} \rangle$
D. $\langle \frac{\sqrt{2}}{2}, \frac{1}{2}, \frac{1}{2} \rangle$ E. none of the above